

Abstract—Stochastic computing (SC) has gained interest by
virtue of its small area and low power in computing units through
encoding numerical values into randomly distributed bitstreams.
However, this method not only results in long latency and thus
increases energy consumption, but also reduces computing
accuracy. Fortunately, stochastic bitstreams can be generated in
parallel to reduce the latency. In this paper, parallel and serial
multipliers using optimized encoding sequences with high
accuracy and low energy consumption are proposed.
Experimental results show that the mean squared error (MSE) is
only 0.0015 for a 3-bit serial/parallel multiplier. The MSEs of 3-
to 8-bit multipliers are reduced by approximately 29% on
average compared with existing designs. The serial multiplier
reduces the area and energy consumption by approximately 28%
and 24% on average. The parallel multiplier reduces the latency
and energy consumption by about 78% and 57% on average,
respectively. To evaluate the effectiveness of the proposed
multipliers, an image multiplication algorithm is implemented.
The results show that the proposed multipliers yield higher
image qualities than previous designs.

Keywords—Stochastic computing, thermometer code,
multiplier, image multiplication.

I. INTRODUCTION

Stochastic computing (SC) encodes a binary value within
the interval [0, 1] into a randomly distributed bitstream. The
value is represented as the proportion of the number of ones in
the bitstream to the length of the bitstream. The main advantage
of performing logical operations through bitstreams is that the
area and power of arithmetic circuits can be significantly
reduced. For example, an AND gate can implement
multiplication in SC. For this reason, it is suitable for
applications containing a large number of multiplication units,
such as filters [1], neural networks (NNs) [2], and image
processing [3].

Although the classical serial SC design requires only one
AND gate to implement the multiplication, as shown in Fig.
1(a), its latency increases exponentially with the bit length n of
inputs, which greatly increases the energy consumption. The
area advantage is also offset to some extent by the presence of
stochastic number generators (SNGs) for generating bitstreams.
Although the random number source (such as the linear
feedback shift register (LFSR)) in an SNG can be shared to
reduce the area, the long latency cannot be alleviated by this
method [4].

To reduce the latency, it is helpful to utilize the parallel
thermometer code for multipliers, since all 1s in the

This work was supported by the Fundamental Research Funds for the
Central Universities of China (Grant No. JZ2020HGTA0085, No.
JZ2020HGQA0162), and by the Natural Sciences and Engineering Research
Council (NSERC) of Canada (Project Number: RES0048688).

thermometer code proceed 0s, and the 0s involved in
multiplication generate 0s and do not affect the results. The
generated results will remain constant after the last 1 in the
thermometer code is involved in the multiplication [5], as
shown in Fig. 1(b). Thus, when performing multiplication, it
does not take extra time to operate on the remaining part in the
thermometer code containing 0s. Using this method, a cost-
effective SC multiplier has been proposed by Sim and Lee [6].
‘Sim’ will be used to represent the design and generated
bitstreams in [6] for easy description. It uses a finite state
machine (FSM) as the multiplexer’s select input to generate a
relatively uniformly distributed low discrepancy sequence as
the bitstream of input multiplicator. The multiplicand enters a
down-counter. The down-counter is reduced by 1 per clock
cycle, and the corresponding bit in the bitstream is detected at
the same time. If the bit is 1, the counter’s output will increase
by 1; otherwise, the output will not change. When the value in
the down-counter is 0, the result is ready. It has the advantage
that not only does it have a high accuracy, but it no longer takes
the 2n clock cycles required by conventional SC (where n is
the number of bits in the multiplier). However, if the
multiplicand in the down-counter is large or even close to 1, it
requires the same number of clock cycles as the classical serial
stochastic multiplier.

Therefore, it becomes important to use parallel stochastic
bitstreams to perform operations. A parallel bitstream
generator (PBG) that produces the thermometer code in one
clock cycle has been proposed in [7]. To guarantee computing
accuracy, a deterministic method has been utilized in this PBG
[8]. However, the deterministic method changes the bitstream
length from 2n to 22n. As shown in Fig. 2, the multiplication of
just two bits uses 9 AND gates. This causes the number of
AND gates in the circuit to increase tremendously even with a
slight increase in the number of input bits, resulting in very
high energy consumption.

In order to balance computing accuracy and energy
consumption at the same time, therefore, a serial multiplier and
a parallel multiplier using optimized encoding sequences are
proposed in this paper. Experimental results show that the
optimized encoding sequences used in the proposed multipliers
lead to smaller errors than Sim's coding sequences for
multiplication.

The main contributions of this work are summarized as
follows. 1) In terms of computing accuracy, an optimized
coding sequence is developed to work with the thermometer
code. 2) A serial multiplier and parallel multiplier are

Y. Zhang, L. Xie, and G. Xie are with the School of Microelectronics,
Hefei University of Technology, Hefei 230009, China (e-mail:
ahzhangyq@hfut.edu.cn; 2098425338@qq.com; gjxie8005@hfut.edu.cn)

J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail:
jhan8@ualberta.ca)

Highly Accurate and Energy Efficient Stochastic Multipliers
Yongqiang Zhang, Member, IEEE, Lingyun Xie, Jie Han, Senior Member, IEEE, and Guangjun Xie

proposed to, respectively, reduce area and latency. The serial
multiplier inherits the advantages of Sim's multiplier and the
parallel multiplier can obtain results in one clock cycle, which
greatly reduces computation time and improves energy
efficiency. 3) These two multipliers are applied to image
multiplication to show their practicability in real applications.

This paper proceeds as follows. Section II describes the
optimized encoding sequence, and the proposed serial and
parallel multipliers. Section III shows the experimental results
and an application of various multipliers. Section IV
concludes this paper.

II. THE PROPOSED MULTIPLIERS

A. Optimized Encoding Sequence
Take the 3-bit binary input b2b1b0 as an example. We take

the low discrepancy coding sequence b2b1b2b0b2b1b20 in [6] as
the initial sequence, and then perform the full permutation of
the initial sequence to obtain a total of C 4

8 ×C 2
4 ×C 1

2 =840
permutation cases. Next, the MSE of each permutation
(including the initial sequence) and the thermometer code after
performing multiplication is calculated. Record all the
permutations that are smaller than the MSE of the initial
sequence, among which the permutation with the smallest
MSE is our optimized coding sequence.

B. The Proposed Serial Multiplier
Fig. 3 shows the circuit of the proposed 3-bit serial

multiplier. B generates the optimized coding sequence
b2b1b20b0b2b1b2 serially by an FSM and MUX of length 2n.
Another input A in this FSM is the initial state aA (for example,
if A=3, the initial state is a3). In each clock cycle, the state
machine jumps to the next state while determining the
sequence value generated under the current clock cycle: adding
1 to the output counter if it is 1; otherwise keeping it unchanged.
When the state machine reaches a0, the output counter
produces the desired multiplication result. This multiplier
requires only one FSM to control both bitstream generation and

output generation. It also has the advantage of being able to end
early. Compared to Sim’s design, it no longer requires an
additional down-counter, thus further reducing the area, while
improving its computing accuracy by using the optimized
encoding sequence.

C. The Proposed Parallel Multiplier
High latency is a drawback of serial stochastic circuits. In

order to further reduce the latency, we consider the use of
parallel stochastic bitstreams. To this end, a parallel multiplier
is proposed, as shown in Fig. 4. Take 3-bit streams as an
example. It uses wire connections to directly generate the
optimized coding sequence b2b1b20b0b2b1b2 for the binary
input B, which saves the additional PBGs required to generate
the bitstreams. The sum of the sequences is then computed in
one clock cycle. Note that the sum of the sequence here
includes the sum of all the previous parts. In other words, the
computed sum of the first 8 bits includes the sum of the first 2
to 7 bits. In this way, the other binary input A can be directly
used as the select signal for the MUX.

III. SIMULATION RESULTS AND APPLICATION

A. Computing Accuracy
In order to compare the computing accuracy of the

proposed optimized encoding sequences with the low
discrepancy sequences of Sim, the MSE is measured for
respectively multiplying them with the thermometer codes [9].
The thermometer codes are chosen to perform the
multiplication with them because the characteristics of
thermometer codes allow the multiplication to end earlier in
hardware. The MSE is given by

22 1 2 1

0 0

()
2 2

n n

xy x y
n n

x y

P P P
MSE

− −

= =

− ⋅
=

×∑∑ , (1)

COUN-
TER

SNG

SNG

0010100101 100000

1001110110 001100
0000100100 000000

5/16

8/16

(a)

COUN-
TER

SNG

SNG

0010100101 100000

0000000011 111111
0000000001 100000

5/16

8/16

(b)

Figure 1. (a) A classical stochastic multiplier, (b) performing multiplication
using thermometer codes.

PBGPBG BA

SUM

Output

Figure 2. The parallel multiplier in [7].

B

b0

b1

b2

mux counter

a6 a5 a4 a3 a2 a1 a0a7

b2b1b20b0b2b1b2

FSM whose initial state is aA

stopwhen FSM reaches a0

Figure 3. The proposed serial multiplier.

+++ + ++ +

MUX

b1b2 b2 0 b0 b2b2 b1 b2

Output

a2
a1
a0

b2 b1 b0

A

B

Figure 4. The proposed parallel multiplier.

TABLE I. THE MSE OF VARIOUS LENGTHS OF THE OPTIMIZED AND SIM
SEQUENCES

 n-bit
MSE

3
(10-3)

4
(10-4)

5
(10-4)

6
(10-5)

7
(10-5)

8
(10-6)

Sim 2.30 6.75 1.92 5.37 1.47 4.02
Proposed 1.50 4.61 1.35 3.89 1.10 3.07

where Px and Py represent the decimal value of the optimized
encoding sequences (or Sim’s encoding sequences) and the
thermometer codes, respectively, and Pxy represents the value
by ANDing two types of encoding sequences.

Experimental results show that when the input binary
number is b2b1b0, the minimum value of MSE in its fully
aligned bitstream is 0.0015. The corresponding optimized
coding sequences are b2b1b20b0b2b1b2 and b2b1b2b00b2b1b2,
while the MSE of Sim's bitstream alignment b2b1b2b0b2b1b20
is 0.0023, which is inferior to the proposed optimized coding
sequences in terms of accuracy. Comparing the optimized
coding sequences with Sim's sequence, it can be found that the
position of 0 in the sequence is more accurate in the middle of
the bitstream than at the end of the bitstream. For example,
when calculating (5/8)×(5/8), Sim's coded bitstream 10111010
and the thermometer code 111111000 are ANDed to give a
result of 4/8, while the optimized coded bitstream 10110101 or
10101101 and the thermometer code 111111000 are ANDed to
give a result of 3/8. It is obvious that 3/8 is closer to the exact
value of 3.125/8. TABLE I gives the MSE of the optimized
encoding sequence and Sim's encoding for 3- to 8-bit
sequences. As can be seen, although the encoding sequences
of Sim already produce a small error in the multiplication, it is
clear that the optimized encoding sequences perform the
multiplication with a lower error. The MSE is reduced by 29%
on average for 3- to 8-bit multipliers.

B. Hardware Cost
The hardware of all multipliers is measured by the

Synopsys Design Compiler with TSMC’s 40 nm standard
library. These multipliers use a binary input-output interface
including two LFSRs, a shared LFSR (LFSR_s) [4], Sim [6],
the proposed serial (Serial_p), and parallel multipliers
(Parallel_p). They are directly applied to image multiplication.
The results show that the proposed multiplier obtains an
approximate image at 6 bits as well as a very close
approximation to the exact image, so we design only up to 6
bits in the hardware comparison. Fig. 5 shows the performance
of various multipliers in terms of area, power, latency, and
energy consumption as the number of input bits increases. It
can be seen that the increase in the number of input bits
exponentially increases the length of the bitstream, resulting
in an increasing trend in the area, power, latency, and energy
consumption for all multipliers. However, the proposed

parallel multipliers have the lowest latency and energy; the
proposed serial multipliers have the lowest area and power.
Compared to Sim’s multiplier, the proposed parallel multiplier
reduces latency and energy by 78% and 57% on average,
respectively; the proposed serial multiplier reduces area and
energy by 24% and 28% on average, respectively. Therefore,
we recommend the proposed serial multiplier if low area and
low energy are pursued, and the proposed parallel multiplier
if low latency and low energy consumption are pursued.

C. Image Multiplication
To show the efficacy of the proposed multipliers in

practical applications, image multiplication is considered. To
evaluate the quality of output images, the peak signal-to-noise
ratio (PSNR) and mean structural similarity index metric
(MSSIM) are used here [10]. The PSNR is given by

() ()

2

10 1 1 2

0 0

10 log
, ,

w r

i j

w r MAXPSNR
S i j S i j

− −

= =

 ⋅ ⋅ =
 ′ −

∑∑

, (2)

where w and r denote the image dimensions, S'(i, j) and S(i, j)
are respectively the exactly and stochastically computed values
of output pixels, and MAX is the maximum value of output
pixels. The MSSIM is defined as

 () ()()
()()

1 2

2 2 2 2
1 1 2

2 21,
k

x y xy

i x y x y

C C
MSSIM X Y

k C C

µ µ σ

µ µ σ σ=

+ +
=

+ + + +
∑ , (3)

where x and y represent the windows of the exact and
approximate images, respectively. The larger the PSNR and
MSSIM, the closer the output image is to the exact image.

To reduce the fluctuation in data, a combination of 5
images is tested for image multiplication. The pixel values of
the same position in two images are used as inputs to the
multiplier. Fig. 6 shows the average of the PSNR and MMSIM
of the image multiplications obtained using 3 to 6-bit SC
multipliers (PSNR marked with '+' and MSSIM marked with
'O'). Both the proposed serial and parallel multipliers use the
optimized sequences to implement the multiplication, so they
do not lead to different image quality and are both denoted as
the “proposed” in Fig. 6. In addition, the method in [9] that
minimizes the SC correlation (SCC) is used here to share an
LFSR [11]. It can be seen from Fig. 6 that both MSSIM and

Figure 5. Performance of various multipliers with different bit-lengths. (a)
Area. (b) Power. (c) Latency. (d) Energy.

Figure 6. The average PSNR and MSSIM of various multipliers with different
bit-lengths to implement image multiplication.

PSNR show an increasing trend as the number of input bits
increases. The proposed design results in the highest PSNR
and MSSIM for the same input bit-lengths. In addition, when
the input of the multipliers reaches 6 bits, the proposed design
yields an image with an average PSNR of more than 40 and
an average MSSIM of more than 0.98, which cannot be
achieved by the other multipliers. This means that the
proposed multiplier produces higher quality images compared
to other multipliers. Fig. 7 shows the output images obtained
by the multipliers with 6-bit inputs when performing image
multiplication (Cameraman × Moon, Lena × Clock, Airplane ×
Moon, Airplane × Clock, Cameraman × Clock) downloaded
from The USC-SIPI Image Database [12]. Fig. 7 (a) to (e) are
the exact images obtained from floating-point multipliers,
while (f) to (j) are the approximate images obtained by using
the proposed multipliers. As can be seen in Fig. 7, in contrast
to exact image multiplication, only the proposed 6-bit
multiplier is required to obtain results that are not significantly
different from the exact image.

IV. CONCLUSION

In this paper, optimized encoding sequences with higher
computing accuracy are introduced to more efficiently
implement stochastic multiplication, making the optimized
serial design with lower area and power without adding other
hardware overheads. In addition, a new parallel multiplier is
proposed so that the computation results are obtained in one
clock cycle, which greatly reduces the circuit delay and thus
the circuit energy consumption. Both multipliers use the
optimized encoding sequences to guarantee a high computing
accuracy. Experimental results show that compared to Sim's
multiplier, the latency and energy consumption of the proposed
parallel multiplier are reduced by 78% and 57% on average,
respectively; the area and energy consumption of the proposed
serial multiplier are reduced by 28% and 24% on average,
respectively. At the same time, the computing accuracy is
improved by 29% on average. Finally, the multipliers are
applied to image multiplication, and the results show that the
proposed multipliers produce output images with higher
quality, compared to existing designs. Therefore, we suggest
the proposed serial multiplier when low area and low energy
consumption are desired, and the proposed parallel multiplier
when low latency and low energy consumption are desired.

REFERENCES
[1] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue,

“Compact and accurate digital filters based on stochastic
computing,” IEEE Trans. Emerging Top. Comput., vol. 7, no. 1,
pp. 31-43, Mar. 2019.

[2] Y. Liu, L. Liu, F. Lombardi, and J. Han, “An energy-efficient and
noise-tolerant recurrent neural network using stochastic
computing,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol.
27, no. 9, pp. 2213-2221, Sep. 2019.

[3] P. Schober, M. Najafi, and N. Taherinejad, “High-accuracy
multiply-accumulate (MAC) technique for unary stochastic
computing,” IEEE Trans. Comput., pp. 1-1, Jun. 2021.

[4] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue,
“Compact and accurate stochastic circuits with shared random
number sources,” in 2014 IEEE 32nd International Conference on
Computer Design (ICCD), Seoul, South Korea, 2014, pp. 361-366.

[5] S. Hyeonuk, and L. Jongeun, “A new stochastic computing
multiplier with application to deep convolutional neural networks,”
in the 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, USA, 2017, pp. 29-34.

[6] H. Sim, and J. Lee, “Cost-effective stochastic MAC circuits for
deep neural networks,” Neural Netw., vol. 117, pp. 152-162, Sep.
2019.

[7] Y. Zhang, R. Wang, X. Zhang, Y. Wang, and R. Huang, “Parallel
hybrid stochastic-binary-based neural network accelerators,”
IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp.
3387-3391, Dec. 2020.

[8] M. Najafi, D. Jenson, D. Lilja, and M. Riedel, “Performing
stochastic computation deterministically,” IEEE Trans. Very
Large Scale Integr. VLSI Syst., vol. 27, no. 12, pp. 2925-2938, Dec.
2019.

[9] S. Salehi, “Low-cost stochastic number generators for stochastic
computing,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol.
28, no. 4, pp. 992-1001, Apr. 2020.

[10] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-12, Apr 2004.

[11] A. Alaghi, and J. Hayes, “Exploiting correlation in stochastic
circuit design,” in the 2013 IEEE 31st International Conference on
Computer Design (ICCD), Asheville, NC, USA, 2013, pp. 39-46.

[12] "The usc-sipi image database," https://sipi.usc.edu/database/.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. (a), (b), (c), (d), and (e): The multiplied images using floating-point inputs. (f), (g), (h), (i), and (j): The multiplied images using the proposed
multiplier.

https://sipi.usc.edu/database/

	I. Introduction
	I. Introduction
	I. Introduction
	IV. Conclusion
	References

