
  

  

Abstract—Stochastic computing (SC) has gained interest by 
virtue of its small area and low power in computing units through 
encoding numerical values into randomly distributed bitstreams. 
However, this method not only results in long latency and thus 
increases energy consumption, but also reduces computing 
accuracy. Fortunately, stochastic bitstreams can be generated in 
parallel to reduce the latency. In this paper, parallel and serial 
multipliers using optimized encoding sequences with high 
accuracy and low energy consumption are proposed. 
Experimental results show that the mean squared error (MSE) is 
only 0.0015 for a 3-bit serial/parallel multiplier. The MSEs of 3- 
to 8-bit multipliers are reduced by approximately 29% on 
average compared with existing designs. The serial multiplier 
reduces the area and energy consumption by approximately 28% 
and 24% on average. The parallel multiplier reduces the latency 
and energy consumption by about 78% and 57% on average, 
respectively. To evaluate the effectiveness of the proposed 
multipliers, an image multiplication algorithm is implemented. 
The results show that the proposed multipliers yield higher 
image qualities than previous designs. 

Keywords—Stochastic computing, thermometer code, 
multiplier, image multiplication. 

I. INTRODUCTION 

Stochastic computing (SC) encodes a binary value within 
the interval [0, 1] into a randomly distributed bitstream. The 
value is represented as the proportion of the number of ones in 
the bitstream to the length of the bitstream. The main advantage 
of performing logical operations through bitstreams is that the 
area and power of arithmetic circuits can be significantly 
reduced. For example, an AND gate can implement 
multiplication in SC. For this reason, it is suitable for 
applications containing a large number of multiplication units, 
such as filters [1], neural networks (NNs) [2], and image 
processing [3]. 

Although the classical serial SC design requires only one 
AND gate to implement the multiplication, as shown in Fig. 
1(a), its latency increases exponentially with the bit length n of 
inputs, which greatly increases the energy consumption. The 
area advantage is also offset to some extent by the presence of 
stochastic number generators (SNGs) for generating bitstreams. 
Although the random number source (such as the linear 
feedback shift register (LFSR)) in an SNG can be shared to 
reduce the area, the long latency cannot be alleviated by this 
method [4]. 

To reduce the latency, it is helpful to utilize the parallel 
thermometer code for multipliers, since all 1s in the 
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thermometer code proceed 0s, and the 0s involved in 
multiplication generate 0s and do not affect the results. The 
generated results will remain constant after the last 1 in the 
thermometer code is involved in the multiplication [5], as 
shown in Fig. 1(b). Thus, when performing multiplication, it 
does not take extra time to operate on the remaining part in the 
thermometer code containing 0s. Using this method, a cost-
effective SC multiplier has been proposed by Sim and Lee [6]. 
‘Sim’ will be used to represent the design and generated 
bitstreams in [6] for easy description. It uses a finite state 
machine (FSM) as the multiplexer’s select input to generate a 
relatively uniformly distributed low discrepancy sequence as 
the bitstream of input multiplicator. The multiplicand enters a 
down-counter. The down-counter is reduced by 1 per clock 
cycle, and the corresponding bit in the bitstream is detected at 
the same time. If the bit is 1, the counter’s output will increase 
by 1; otherwise, the output will not change. When the value in 
the down-counter is 0, the result is ready. It has the advantage 
that not only does it have a high accuracy, but it no longer takes 
the 2n clock cycles required by conventional SC ( where n is 
the number of bits in the multiplier). However, if the 
multiplicand in the down-counter is large or even close to 1, it 
requires the same number of clock cycles as the classical serial 
stochastic multiplier. 

Therefore, it becomes important to use parallel stochastic 
bitstreams to perform operations. A parallel bitstream 
generator (PBG) that produces the thermometer code in one 
clock cycle has been proposed in [7]. To guarantee computing 
accuracy, a deterministic method has been utilized in this PBG 
[8]. However, the deterministic method changes the bitstream 
length from 2n to 22n. As shown in Fig. 2, the multiplication of 
just two bits uses 9 AND gates. This causes the number of 
AND gates in the circuit to increase tremendously even with a 
slight increase in the number of input bits, resulting in very 
high energy consumption. 

In order to balance computing accuracy and energy 
consumption at the same time, therefore, a serial multiplier and 
a parallel multiplier using optimized encoding sequences are 
proposed in this paper. Experimental results show that the 
optimized encoding sequences used in the proposed multipliers 
lead to smaller errors than Sim's coding sequences for 
multiplication. 

The main contributions of this work are summarized as 
follows. 1) In terms of computing accuracy, an optimized 
coding sequence is developed to work with the thermometer 
code. 2) A serial multiplier and parallel multiplier are 
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proposed to, respectively, reduce area and latency. The serial 
multiplier inherits the advantages of Sim's multiplier and the 
parallel multiplier can obtain results in one clock cycle, which 
greatly reduces computation time and improves energy 
efficiency. 3) These two multipliers are applied to image 
multiplication to show their practicability in real applications. 

This paper proceeds as follows. Section II describes the 
optimized encoding sequence, and the proposed serial and 
parallel multipliers. Section III shows the experimental results 
and an application of various multipliers. Section IV 
concludes this paper. 

II. THE PROPOSED MULTIPLIERS 

A. Optimized Encoding Sequence 
Take the 3-bit binary input b2b1b0 as an example. We take 

the low discrepancy coding sequence b2b1b2b0b2b1b20 in [6] as 
the initial sequence, and then perform the full permutation of 
the initial sequence to obtain a total of C 4 

8 ×C 2 
4 ×C 1 

2 =840 
permutation cases. Next, the MSE of each permutation 
(including the initial sequence) and the thermometer code after 
performing multiplication is calculated. Record all the 
permutations that are smaller than the MSE of the initial 
sequence, among which the permutation with the smallest 
MSE is our optimized coding sequence. 

B. The Proposed Serial Multiplier 
Fig. 3 shows the circuit of the proposed 3-bit serial 

multiplier. B generates the optimized coding sequence 
b2b1b20b0b2b1b2 serially by an FSM and MUX of length 2n. 
Another input A in this FSM is the initial state aA (for example, 
if A=3, the initial state is a3). In each clock cycle, the state 
machine jumps to the next state while determining the 
sequence value generated under the current clock cycle: adding 
1 to the output counter if it is 1; otherwise keeping it unchanged. 
When the state machine reaches a0, the output counter 
produces the desired multiplication result. This multiplier 
requires only one FSM to control both bitstream generation and 

output generation. It also has the advantage of being able to end 
early. Compared to Sim’s design, it no longer requires an 
additional down-counter, thus further reducing the area, while 
improving its computing accuracy by using the optimized 
encoding sequence. 

C. The Proposed Parallel Multiplier 
High latency is a drawback of serial stochastic circuits. In 

order to further reduce the latency, we consider the use of 
parallel stochastic bitstreams. To this end, a parallel multiplier 
is proposed, as shown in Fig. 4. Take 3-bit streams as an 
example. It uses wire connections to directly generate the 
optimized coding sequence b2b1b20b0b2b1b2 for the binary 
input B, which saves the additional PBGs required to generate 
the bitstreams. The sum of the sequences is then computed in 
one clock cycle. Note that the sum of the sequence here 
includes the sum of all the previous parts. In other words, the 
computed sum of the first 8 bits includes the sum of the first 2 
to 7 bits. In this way, the other binary input A can be directly 
used as the select signal for the MUX. 

III. SIMULATION RESULTS AND APPLICATION 

A. Computing Accuracy 
In order to compare the computing accuracy of the 

proposed optimized encoding sequences with the low 
discrepancy sequences of Sim, the MSE is measured for 
respectively multiplying them with the thermometer codes [9]. 
The thermometer codes are chosen to perform the 
multiplication with them because the characteristics of 
thermometer codes allow the multiplication to end earlier in 
hardware. The MSE is given by 
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Figure 1.  (a) A classical stochastic multiplier, (b) performing multiplication 
using thermometer codes. 
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Figure 2.  The parallel multiplier in [7]. 
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Figure 3.  The proposed serial multiplier. 
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Figure 4.  The proposed parallel multiplier. 
 

TABLE I.  THE MSE OF VARIOUS LENGTHS OF THE OPTIMIZED AND SIM 
SEQUENCES 

        n-bit 
MSE 

3 
(10-3) 

4 
(10-4) 

5 
(10-4) 

6 
(10-5) 

7 
(10-5) 

8 
(10-6) 

Sim 2.30 6.75 1.92 5.37 1.47 4.02 
Proposed 1.50 4.61 1.35 3.89 1.10 3.07 

 



  

where Px and Py represent the decimal value of the optimized 
encoding sequences (or Sim’s encoding sequences) and the 
thermometer codes, respectively, and Pxy represents the value 
by ANDing two types of encoding sequences. 

Experimental results show that when the input binary 
number is b2b1b0, the minimum value of MSE in its fully 
aligned bitstream is 0.0015. The corresponding optimized 
coding sequences are b2b1b20b0b2b1b2 and b2b1b2b00b2b1b2, 
while the MSE of Sim's bitstream alignment b2b1b2b0b2b1b20 
is 0.0023, which is inferior to the proposed optimized coding 
sequences in terms of accuracy. Comparing the optimized 
coding sequences with Sim's sequence, it can be found that the 
position of 0 in the sequence is more accurate in the middle of 
the bitstream than at the end of the bitstream. For example, 
when calculating (5/8)×(5/8), Sim's coded bitstream 10111010 
and the thermometer code 111111000 are ANDed to give a 
result of 4/8, while the optimized coded bitstream 10110101 or 
10101101 and the thermometer code 111111000 are ANDed to 
give a result of 3/8. It is obvious that 3/8 is closer to the exact 
value of 3.125/8. TABLE I gives the MSE of the optimized 
encoding sequence and Sim's encoding for 3- to 8-bit 
sequences. As can be seen, although the encoding sequences 
of Sim already produce a small error in the multiplication, it is 
clear that the optimized encoding sequences perform the 
multiplication with a lower error. The MSE is reduced by 29% 
on average for 3- to 8-bit multipliers. 

B. Hardware Cost 
The hardware of all multipliers is measured by the 

Synopsys Design Compiler with TSMC’s 40 nm standard 
library. These multipliers use a binary input-output interface 
including two LFSRs, a shared LFSR (LFSR_s) [4], Sim [6], 
the proposed serial (Serial_p), and parallel multipliers 
(Parallel_p). They are directly applied to image multiplication. 
The results show that the proposed multiplier obtains an 
approximate image at 6 bits as well as a very close 
approximation to the exact image, so we design only up to 6 
bits in the hardware comparison. Fig. 5 shows the performance 
of various multipliers in terms of area, power, latency, and 
energy consumption as the number of input bits increases. It 
can be seen that the increase in the number of input bits 
exponentially increases the length of the bitstream, resulting 
in an increasing trend in the area, power, latency, and energy 
consumption for all multipliers. However, the proposed 

parallel multipliers have the lowest latency and energy; the 
proposed serial multipliers have the lowest area and power. 
Compared to Sim’s multiplier, the proposed parallel multiplier 
reduces latency and energy by 78% and 57% on average, 
respectively; the proposed serial multiplier reduces area and 
energy by 24% and 28% on average, respectively. Therefore, 
we recommend the proposed serial multiplier if low area and 
low energy are pursued, and the proposed parallel multiplier 
if low latency and low energy consumption are pursued.  

C. Image Multiplication 
To show the efficacy of the proposed multipliers in 

practical applications, image multiplication is considered. To 
evaluate the quality of output images, the peak signal-to-noise 
ratio (PSNR) and mean structural similarity index metric 
(MSSIM) are used here [10]. The PSNR is given by 
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where w and r denote the image dimensions, S'(i, j) and S(i, j) 
are respectively the exactly and stochastically computed values 
of output pixels, and MAX is the maximum value of output 
pixels. The MSSIM is defined as 
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where x and y represent the windows of the exact and 
approximate images, respectively. The larger the PSNR and 
MSSIM, the closer the output image is to the exact image.  

To reduce the fluctuation in data, a combination of 5 
images is tested for image multiplication. The pixel values of 
the same position in two images are used as inputs to the 
multiplier. Fig. 6 shows the average of the PSNR and MMSIM 
of the image multiplications obtained using 3 to 6-bit SC 
multipliers (PSNR marked with '+' and MSSIM marked with 
'O'). Both the proposed serial and parallel multipliers use the 
optimized sequences to implement the multiplication, so they 
do not lead to different image quality and are both denoted as 
the “proposed” in Fig. 6. In addition, the method in [9] that 
minimizes the SC correlation (SCC) is used here to share an 
LFSR [11]. It can be seen from Fig. 6 that both MSSIM and 

 
Figure 5.  Performance of various multipliers with different bit-lengths. (a) 
Area. (b) Power. (c) Latency. (d) Energy. 
 

 
Figure 6.  The average PSNR and MSSIM of various multipliers with different 
bit-lengths to implement image multiplication. 
 



  

PSNR show an increasing trend as the number of input bits 
increases. The proposed design results in the highest PSNR 
and MSSIM for the same input bit-lengths. In addition, when 
the input of the multipliers reaches 6 bits, the proposed design 
yields an image with an average PSNR of more than 40 and 
an average MSSIM of more than 0.98, which cannot be 
achieved by the other multipliers. This means that the 
proposed multiplier produces higher quality images compared 
to other multipliers. Fig. 7 shows the output images obtained 
by the multipliers with 6-bit inputs when performing image 
multiplication (Cameraman × Moon, Lena × Clock, Airplane × 
Moon, Airplane × Clock, Cameraman × Clock) downloaded 
from The USC-SIPI Image Database [12]. Fig. 7 (a) to (e) are 
the exact images obtained from floating-point multipliers, 
while (f) to (j) are the approximate images obtained by using 
the proposed multipliers. As can be seen in Fig. 7, in contrast 
to exact image multiplication, only the proposed 6-bit 
multiplier is required to obtain results that are not significantly 
different from the exact image. 

IV. CONCLUSION 

In this paper, optimized encoding sequences with higher 
computing accuracy are introduced to more efficiently 
implement stochastic multiplication, making the optimized 
serial design with lower area and power without adding other 
hardware overheads. In addition, a new parallel multiplier is 
proposed so that the computation results are obtained in one 
clock cycle, which greatly reduces the circuit delay and thus 
the circuit energy consumption. Both multipliers use the 
optimized encoding sequences to guarantee a high computing 
accuracy. Experimental results show that compared to Sim's 
multiplier, the latency and energy consumption of the proposed 
parallel multiplier are reduced by 78% and 57% on average, 
respectively; the area and energy consumption of the proposed 
serial multiplier are reduced by 28% and 24% on average, 
respectively. At the same time, the computing accuracy is 
improved by 29% on average. Finally, the multipliers are 
applied to image multiplication, and the results show that the 
proposed multipliers produce output images with higher 
quality, compared to existing designs. Therefore, we suggest 
the proposed serial multiplier when low area and low energy 
consumption are desired, and the proposed parallel multiplier 
when low latency and low energy consumption are desired. 
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Figure 7.  (a), (b), (c), (d), and (e): The multiplied images using floating-point inputs. (f), (g), (h), (i), and (j): The multiplied images using the proposed 
multiplier. 
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